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Degree-dependent intervertex separation in complex networks
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We study the mean length ��k� of the shortest paths between a vertex of degree k and other vertices in
growing networks, where correlations are essential. In a number of deterministic scale-free networks we
observe a power-law correction to a logarithmic dependence, ��k�=A ln�N /k��−1�/2�−Ck�−1 /N+¯ in a wide
range of network sizes. Here N is the number of vertices in the network, � is the degree distribution exponent,
and the coefficients A and C depend on a network. We compare this law with a corresponding ��k� dependence
obtained for random scale-free networks growing through the preferential attachment mechanism. In stochastic
and deterministic growing trees with an exponential degree distribution, we observe a linear dependence on
degree, ��k��A ln N−Ck. We compare our findings for growing networks with those for uncorrelated graphs.
DOI: 10.1103/PhysRevE.73.056122 PACS number�s�: 05.50.�q, 05.10.�a, 05.40.�a, 87.18.Sn
I. INTRODUCTION

The main objects of interest of the physics of complex
networks �1–6� are extremely compact, infinite dimensional
nets—so-called small worlds. The basic measure of the com-
pactness of a network is the mean intervertex distance or the
mean intervertex separation, that is, the mean length of the
shortest path between a pair of vertices, �. �The path runs
along edges, each edge has the unit length.� Physicists often
use another term for this characteristic: The diameter of a
network, although in graph theory the term network diameter
is reserved for the maximal separation of a pair of vertices in
a net.

A network shows the small-world effect if its mean inter-
vertex distance slowly increases with the network size �the
total number of vertices in a network, N�, slower than any
power-law function of N. This is in contrast to finite dimen-
sional objects, where the mean intervertex distance grows as
N1/d, d being the dimension of an object. �We discuss sparse
networks.� By definition, a small world is a network with the
small-world effect. Note that this definition is not related to
the presence of loops in a network. Small worlds may be
loopy or clustered networks, or they may be without loops
�trees�.

The mean intervertex distances in networks were exten-
sively studied both in the framework of empirical research
�7� and analytically �8–11�. The typical size dependence of
the mean intervertex separation is logarithmic, ��N�� ln N.
However, the mean intervertex distance is an integrated,
coarse characteristic. One may be interested in a more deli-
cate issue—the position of an individual vertex in a network.
Recently Holyst et al. �12�, have considered the question:
how far are vertices of specific degrees from each other?
They have shown that in uncorrelated networks, the mean
length of the shortest path between vertices of degrees k and
k� is ��k ,k���D+A ln N−A ln�kk��, where D is independent
of N, k, and k�, and the coefficient A depends only of the
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mean branching ratio of the network. Note the coincidence
of the coefficients of ln N and ln�k ,k�� in this result. Holyst
et al. �12�, also calculated ��k ,k�� of networks with nonzero
clustering though without degree-degree correlations. In this
case, they have arrived at the same expression as above but
with coefficients of ln N and ln�k ,k�� additionally depending
on the clustering. In this paper we present our observations
for another �though related� characteristic—the mean length
of the shortest paths from a vertex of a given degree k to the
remaining vertices of the network, ��k�. This quantity is re-
lated to ��k ,k�� in the following way:

��k� = �
k�

P�k����k,k�� , �1�

and so

� = �
k

P�k���k� = �
k,k�

P�k�P�k����k,k�� . �2�

In simple terms, we reveal the smallness of a network from
the point of view of its vertex of a given degree. Our objects
of interest are growing �and so inevitably correlated� net-
works.

The basic property of most of the natural networks is a
heavy-tailed degree distribution, so that vertex degrees are
distributed over a wide range in contrast to classical random
graphs. This motivates the study of ��k� in networks with
various complex distributions of connections. The question
is: How strong may the variation of ��k� be? One should note
that this characteristic was measured recently in Ref. �13� in
several networks, and noticeable variations of ��k� were
found. We observe nontrivial dependences ��k� for networks
with power-law and exponential degree distributions. We
mostly consider growing networks, where correlations be-
tween the degrees of vertices are important, but for compari-
son we also discuss uncorrelated networks. In our study we
use convenient deterministic growing graphs and compare
our observations with simulations of stochastic models of
growing networks.

In Sec. II we list our main observations, so that readers
not interested in details may restrict themselves to the first
two sections. Section III contains the discussion of the ��k�
©2006 The American Physical Society-1

http://dx.doi.org/10.1103/PhysRevE.73.056122


DOROGOVTSEV, MENDES, AND OLIVEIRA PHYSICAL REVIEW E 73, 056122 �2006�
dependence in uncorrelated networks for the sake of com-
parison. In Sec. IV we explain in detail how the results were
obtained and describe particular cases. In Sec. V we make a
few remarks on the degree-dependent intervertex separation
in various networks and discuss relations of this quantity to
centrality measures used in sociology �14,15�.

II. MAIN OBSERVATIONS

For the purpose of the analytical description of ��k� we
use simple deterministic graphs. Deterministic small worlds
were considered in a number of recent papers �16–26� and
have turned out to be a useful tool. �We called these net-
works pseudofractals. Indeed, at first sight, they look like
fractals. However, they are infinite dimensional objects, so
that they are not fractals.� These graphs correctly reproduce
practically all known network characteristics. We use a set of
deterministic scale-free models with various values of the
degree distribution exponent �, P�k��k−� �see Fig. 1�. We
consider deterministic graphs with � in the range between 2
and �, where a graph with �=� has an exponentially de-
creasing �discrete� spectrum of degrees.

In the studied scale-free deterministic graphs, in a wide
range of the graph sizes, the mean separation of a vertex of
degree k from the remaining vertices of the network is found

FIG. 1. The set of deterministic graphs that is used in this paper.
�a� A scale-free graph with the exponent of the degree distribution
�=1+ln 3/ ln 2=2.585. . . �2,17�. At each step, each edge of the
graph transforms into a triangle. �b� A scale-free tree graph with
�=1+ln 3/ ln 2=2.585. . . �18�. At each step, a pair of new vertices
is attached to the ends of each edge of the graph. �c� A scale-free
tree graph with �=3. At each step, a pair of new vertices is attached
to the ends of each edge plus a new vertex is attached to each vertex
of the graph. �d� A scale-free tree graph with �=1+ln 5/ ln 2
=3.322. . . At each step a pair of new vertices is attached to the ends
of each edge plus two new vertices are attached to each vertex of
the graph. �e� A deterministic graph with an exponentially decreas-
ing spectrum of degrees �18�. At each step a new vertex is attached
to each vertex of the graph. In all these graphs a mean intervertex
distance grows with the number N of vertices as ln N.
to follow the dependence
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��k� = A ln� N

k��−1�/2� − C
k�−1

N
+ ¯ . �3�

The constants A and C �as well as the sign of C� depend on
a particular network.

In stochastic growing scale-free networks, we observe a
dependence ��k ,N� shown in Fig. 2. This figure demon-
strates the results of the simulations of networks growing by
the preferential attachment mechanism with a linear prefer-
ence function �27�. While the dependence on ln N is linear
practically in the entire range of observation, ��k� versus ln k
is of a more complex form �see Fig. 2�. The derivative
d��k� /d ln k is nonzero at k=1 and at large degrees, ��k� is
fitted by a linear function of ln k with a larger slope. One
should note that in all growing networks considered in this
paper, new connections cannot emerge between already ex-

FIG. 2. Degree-dependent mean intervertex separation in a ran-
dom scale-free network �tree� growing through the mechanism of
preferential attachment. At each time step a new vertex is added. It
becomes attached to a vertex selected with probability proportional
to the sum of the degree of this vertex and a constant A, “additional
attractiveness” �27�. Here we use A=1. �a� ��k� vs log10 k for net-
works of N=1000, 3000, 10 000, 30 000, 100 000, and 300 000,
vertices. Each of the first four curves were obtained after 50 runs,
while for the networks of 100 000, and 300 000 vertices, 20 and 5
runs were used, correspondingly. Binning was made at large de-
grees, which allowed us to reduce noise. The inset demonstrates
that in this network, the difference ��k=1�−��k� does not depend
on the size N. In the inset, for the sake of clearness we do not show
lines connecting points. The dashed lines highlight two limiting
behaviors. As k approaches its minimal value k=1, ��k=1�−��k�
	1.0 log10 k	0.43 ln k for all studied network sizes, while at large
degrees, ��k=1�−��k�	const+4.1 log10 k	const+1.8 ln k. �b� The
dependence of ��k=1� on log10 N. For comparison, a line with a
slope of 3 is shown.
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isting vertices. These networks are often called “citation
graphs.”

In the specific point �=3, correlations between the de-
grees of the nearest neighbors in these graphs are anoma-
lously low. In this situation, the main contribution to ��k�
reduces to ��k�� ln�N /k�, which coincides with the result for
equilibrium uncorrelated networks �see Sec. III�.

Formula �3� fails at �→�. For example it cannot be ap-
plied for networks with an exponential degree distribution. In
growing trees with this distribution, we observe the depen-
dence

��k� � A ln N − Ck , �4�

where the constants A and C depend on a network. In par-
ticular, we found that this law is exact in deterministic graphs
�trees� with an exponential degree distribution �e.g., graph
�e� in Fig. 1� at least up to very large sizes. Moreover, we
observed the same dependence in a simulated stochastically
growing tree with random attachment. In this tree �with an
exponential degree distribution�, at each time step, a new
vertex is attached to a randomly selected vertex of the net.
The result of the simulation of this network is shown in Fig.
3�a�. In both the networks—graph �e� in Fig. 1 and the cor-
responding stochastic net with random attachment,—the
slope of the degree dependence turned out to be −1/2. More
generally, if in a growing tree of this kind, at each step, n
new vertices become attached to a vertex, the slope of the
degree dependence equals −1/ �n+1� �see Fig. 3�b��.

All the networks that we studied, had the generic property

max
k

��k� 	 2 min
k

��k� , �5�

in the large network limit. As is natural, the maximum value
of ��k� is attained at the minimal degree of a vertex in a
network, and vice versa, the minimum value of ��k� is at-
tained at the maximum degree.

III. �„K… OF AN UNCORRELATED NETWORK

The configuration model �28–31� is a standard model of
an uncorrelated �equilibrium� random network. In simple
terms, these are maximally random graphs with a given de-
gree distribution. In the large network limit, they have rela-
tively few loops and almost surely are trees in any local
environment of a given vertex. The mean intervertex dis-
tance � in these networks is estimated in the manner shown
in Ref. �8� �see also Refs. �9,11��. The mean number of mth
nearest neighbors of a vertex is

zm = z1�z2/z1�m−1, �6�

where z1= 
k� is the mean number of the nearest neighbors of
a vertex, i.e., the mean degree. z2= 
k2�− 
k� is the mean
number of the second nearest neighbors of a vertex. z2 /z1 is
actually the branching coefficient. By using formula �6�, one
can get �: z��N, so ��N�	 ln N / ln�z2 /z1�.

Similarly, for the mean number of mth nearest neighbors
of a vertex of degree k, we have

m−1
zm�k� = k�z2/z1� . �7�
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So, the estimate is k�z2 /z1���k�−1�N and thus

��k� 	
ln�N/k�
ln�z2/z1�

. �8�

Here we neglected an additional constant independent of N
and k which would be excess precision.

The relation �7� is evident. It also may be obtained strictly
by using the Z-transformation technique

zm�k� = �x
d

dx
�1

k��1„. . .�1�x�…��
x=1

. �9�

�1�x�=��x� /z1 is the Z transformation of the distribution of
the number of edges of an end vertex of an edge with an
excluded edge itself. ��x� is the Z-transformation of the de-
gree distribution of the network: ��x�
�kP�k�xk. Formula
�9� is a direct consequence of the following features of the
configuration model: �i� the network has a locally treelike
structure, �ii� vertices of the network are statistically equiva-
lent, and �iii� correlations between degrees of the nearest-

FIG. 3. Degree-dependent mean intervertex separation in sto-
chastic networks �trees� growing under the mechanism of random
attachment. These networks have exponential degree distributions.
�a� At each time step a vertex is attached to a randomly chosen
vertex of the network. The dependence is the result of the simula-
tion of the network of 105 vertices, 50 runs. For comparison, a line
with a slope of −1/2 is shown. �b� At each time step three vertices
are attached to a randomly chosen vertex of the network. The de-
pendence is presented for the network of 9998 vertices, 50 runs.
The initial configuration consists of two vertices connected by an
edge. For comparison, a line with a slope of −1/4 is shown. Note
that in these plots max ��k�	2 min ��k�. In other words, in these
networks, there are no vertices of degree greater than kmax:
��kmax�=max ��k� /2. Note fluctuations in the range of the highest
degrees.
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neighbor vertices are absent. Relation �9� together with
�1�1�=��1�=1 readily leads to relation �8�.

Note that expression �8� also follows from the mentioned
result of Holyst et al. �12�, that is ��k ,k��
	 ln�N / �kk��� / ln�z2 /z1� for the configuration model. Substi-
tuting this result into formula �1� and ignoring terms inde-
pendent of N and k immediately gives expression �8�. In its
turn, substituting expression �8� into formula �1� leads to a
standard formula for the configuration model: �
	 ln N / ln�z2 /z1�.

One point should be emphasized. In the configuration
model, the logarithmic size dependence of the �degree-
independent� mean intervertex distance ��N�� ln N is valid
only for degree distributions with a finite second moment

k2�. If 
k2� diverges as N→�, ��N� grows slower than ln N.
One can see that the result �8� may be generalized to any
given form ��N� of the size-dependence of the mean inter-
vertex distance. In this general case, the degree-dependent
separation is expressed in terms of the function ��N�,
namely, ��k ,N����N /k�.

IV. DERIVATIONS

In this section we study a degree-dependent intervertex
separation in the deterministic graphs of Fig. 1. Graphs �a�–
�d� have a discrete spectrum of vertex degrees with a power-
law envelope. Graph �e� has a discrete spectrum of vertex
degrees with an exponential envelope. We also list some ba-
sic characteristics of these graphs. We stress that the main
structural characteristics �clustering, degree-degree correla-
tions �32–37�, etc.� of these deterministic networks are quite
close to those of their stochastic analogs �see �17��.

(1) Graph (a) in Fig. 1. This graph was proposed in Ref.
�2� and extensively studied in Ref. �17�. The growth starts
from a single edge �t=0�. At each time step, each edge of the
graph transforms into a triangle. Actually, we have a deter-
ministic version of a stochastic growing network with attach-
ment of a new vertex to a randomly chosen edge, see Ref.
�38�. The number of vertices of the graph is Nt=1+ �3t

+1� /2 �t=0,1 ,2 , . . . is the number of the generation.� In the
large network limit, the mean degree of the graph is 
k�
→4.

Degrees of the vertices in the graph take values k�s�=2s,
s=1,2 , . . . , t. The spectrum of degrees has a power-law en-
velope. This spectrum corresponds to a continuum scale-free
spectrum P�k��k−� with exponent �=1+ln 3/ ln 2=2.585. . ..
Note that this network has numerous triangles, which sug-
gests high clustering. In more detail, by definition, the aver-
age clustering coefficient of a vertex of degree k is

C�k� = � c�k�
k�k − 1�/2�k

=

c�k��k

k�k − 1�/2
. �10�

Here, c�k� is the number of triangles attached to a vertex of
degree k, and 
 �k means the averaging over all vertices of
degree k. One can see that in this graph �as well as in its
stochastic version�

C�k� =
2

. �11�

k
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(Indeed, by construction, the number of triangles attached to
a vertex of degree k in the graph is k−1. So,
C�k�= �k−1� / �k�k−1� /2�=2/k.) This gives, for the mean
clustering,

C̄ = �
k

P�k�C�k� =
4

5
, �12�

while the standard clustering coefficient �transitivity�, i.e.,
the density of loops of length 3 in a network,

C =

�
k

P�k�C�k�k�k − 1�

�
k

P�k�k�k − 1�
, �13�

approaches zero in the infinite network limit, C=0. Note the
difference between the finite mean clustering of the network
and its zero clustering coefficient.

In principle, one may derive an exact analytical expres-
sion for the degree-dependent separation by using recursion
relations and the Z-transformation technique. However, these
calculations turn out to be cumbersome. Instead, here we
only check that some analytical formula for ��k� is valid in a
sufficiently large number of generations of a deterministic
graph, up to, say, t�10 or 12. So, we confirm a guessed
expression in networks of sizes up to N�105. In fact, we
implement the following approach.

�i� Find the mean separation values �t�s� for all kinds of
vertices in each of several first generations of the determin-
istic graph �t is the number of generation, and k=2s, s
=1,2 , . . . , t�.

�ii� By using this array of numbers, guess the form of
�t�s�.

�iii� Check this result by computing directly �t�s� for sev-
eral extra generations of the graph.

There are few computations in stage �i�: we have to find
only t values of �t�s� in a t generation of a graph. For suffi-
ciently small networks, these values can be found even with-
out a computer. Step �ii� also turns out to be rather easy since
we already know the structure of the analytical expressions
for a mean intervertex distance in these networks �see Ref.
�17��. Step �iii� may be performed by using a computer to
count paths. This approach is based on our experience with
problems on these graphs and was checked in Ref. �17� for
related quantities. Our guess actually exploits underlined re-
cursion relations without revealing them. Nonetheless, we
can only claim that the analytical expressions, obtained in
this way, are valid at the studied generations of our determin-
istic graphs. In principle, there exists a �small� chance that at
some higher generation �or generations�, these formulas fail.
Thus, the results of this section should be considered only as
observations of ��k� for a set of networks of a modest size.

This way, we get

�t�s� =
1

2�Nt − 1�
�2�2t − s + 5�3t−2 − 3s−1 + 1� . �14�

This formula is valid for t�1. We checked it up to t=12,

which corresponds to Nt=265 722. We also checked that this
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formula leads to the known exact formula for the mean in-
tervertex distance � for any t and, consequently, for any N
�17�. An asymptotic form of this expression is

��k,N� =
4

9 ln 3
ln N −

2

9 ln 2
ln k −

k�−1

6N
+

4

9

ln 2

ln 3
+

10

9
+ ¯

�15�

at large N, where N is the total number of vertices in the
graph. This leads to formula �3�.

One can see that the minimum value of ��k� is �min

=��k=2t��2t /9, where t� ln N / ln 3. On the other hand, its
maximum value is �max=��k=2��4t /9. So, we arrive at re-
lation �5�: �max=2�min.

(2) Graph (b) in Fig. 1. This graph was proposed in Ref.
�18�. At each time step, each edge of the graph transforms in
the following way: each end vertex of the edge gets a new
vertex attached �see Fig. 1, graph �b�, instant 0→ instant 1�.
This graph is very similar to graph �a�. In particular, the
exponent of its degree distribution is the same, �=1
+ln 3/ ln 2=2.585. . .. The difference is that the graph is a
tree, so the mean degree 
k�→2 as N→�.

The total number of vertices in the graph is Nt=3t+1. The
vertices have degrees k�s�=2s, where s=0,1 ,2 , . . . , t. In the
same way as for graph �a�, we find the expression

�t�s� =
1

2�Nt − 1�
��4t − 2s + 9�3t−1 − 3s� , �16�

which is observed starting with t=0. This leads to the
asymptotic relation

��k,N� =
2

3 ln 3
ln N −

1

3 ln 2
ln k −

k�−1

2N
+

3

2
+ ¯ ,

�17�

that is, to formula �3�.
The minimum value of ��k� is �min=��k=2t�� t /3, where

t� ln N / ln 3. The maximum value is �max=��k=1��2t /3,
i.e., again, we arrive at relation �5�.

(3) Graph (c) in Fig. 1. At each step �i� a new vertex
becomes attached to each end vertex of each edge of this
graph and, simultaneously, �ii� a new vertex becomes at-
tached to each vertex of the graph. This produces a growing
deterministic scale-free tree with exponent �=3, which is a
deterministic analog of the Barabási-Albert model �39,40�
�for the exact solution of the stochastic model, see Refs.
�27,32,41��.

The number of vertices in the graph is Nt=1+ �4t+1

−1� /3. Their degrees take values k�s�=2s−1, s
=1,2 ,3 , . . . , t+1. The observed degree-dependent separation
is

�t�s � 2� =
1

9�Nt − 1�
�2�6t − 3s + 10�4t − 4s − 1� . �18�

Asymptotically, this is
056122
��k,N� =
1

ln 4
ln N −

1

2 ln 2
ln k −

k�−1

9N
+

ln 3

2 ln 2
+

2

3
+ ¯

�19�

for k ,N�1 �note that the maximum degree of a vertex in this
graph is kmax�N1/2�. This leads to expression �3� with �=3,
which coincides with result �8� for uncorrelated networks.
This is an understandable coincidence. Indeed, correlations
between degrees of the nearest neighbor vertices in this de-
terministic graph, as well as in the Barabási-Albert model are
anomalously weak. So, the result must be close to that for an
uncorrelated network.

The minimum value of ��k� in this graph is �min=��k
=2t+1−1�� t /2, where t� ln N / ln 4. The maximum value is
�max=��k=1�� t, so that relation �5� is fulfilled.

(4) Graph (d) in Fig. 1. At each step �i� a pair of new
vertices is attached to ends of each edge of the graph plus �ii�
two new vertices are attached to each vertex of the graph.
This results in the value of the � exponent greater than 3,
�=1+ln 5/ ln 2=3.322. . ..

The number of vertices in the graph is Nt= �3	5t+1� /2.
Degrees of the vertices are k�s�=3	2s−1−2, s
=1,2 ,3 , . . . , t+1. The observed expression for the degree-
dependent separation is

�t�s� =
1

8�Nt − 1�
��72t − 36s + 71 + 53−s�5t−1 + 25s−1 − 6� .

�20�

The corresponding asymptotic expression is of the following
form:

��k,N� =
6 ln N

5 ln 5
−

3 ln k

5 ln 2
−

5−ln 3/ln 2

4N
k�−1 + 1.232 + ¯ ,

�21�

where the contribution 1.232. . . = �6 ln�2/3�� / �5 ln 5�
+ �3 ln 3� / �5 ln 2�+7/12. Again, now with the graph where
�
3, we arrive at formula �3�.

In this graph, we have �min=��k=3	2t−2��3t /5 and
�max=��k=1��6t /5, where t� ln N / ln 5.

The important feature of the expressions for ��k ,N� in
deterministic scale-free networks with ��3 were nonequal
coefficients of ln N and ln k. For comparison we have mea-
sured ��k ,N� in a random growing scale-free network grow-
ing through the mechanism of preferential attachment with a
linear preference function �27�. At each time step, a new
vertex emerges and becomes attached to a vertex chosen
with probability proportional to the sum of its degree and a
constant A. Exponent �=3+A. We use A=1, so that �=4.
The resulting degree-dependent separations are shown in
Fig. 2�a� for networks of up to 300 000 vertices. One can see
in the inset that in these random networks, the difference
��k=1,N�−��k ,N� is independent of N in contrast to the
deterministic graphs �a�–�d�. Furthermore, ���k=1,N�
−��k ,N�� / log10 k	1.0 as log10 k approaches zero �i.e.,
d��k ,N� /d ln k	−0.43�. However, at large k, we find a lin-

ear dependence on log10 k with a larger slope, namely 4.1
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�i.e., d��k ,N� /d ln k	−1.8�. In its turn, ��k=1,N� is well
fitted by a linear dependence on log10 N with a slope of ap-
proximately 3.1 �see Fig. 2�b�, i.e., d��k=1,N� /d ln N
	1.35�. The difference in these slopes, 4.1 and 3.1, is in
sharp contrast to uncorrelated networks. The ratio of these
slopes, 1.3, is close to what we had for deterministic graphs
according to Eq. �3� with �=4 substituted, namely,
��−1� /2=1.5. Moreover, Fig. 2�a� shows that for each net-
work size, �max	2�min, as was observed in deterministic
graphs.

One should note that the contribution �k�−1 /N to ��k ,N�
for the deterministic graphs, is noticeable only in a narrow
neighborhood of kmax, if results are presented in the form
��k ,N� versus ln k. On the other hand, the linear dependence
��k ,N� on ln k is realized in a much wider range of ln k. In
Eq. �15�, graph �a�, it is valid for all degrees up to nearly
kmax, and in Eqs. �17�, �19�, and �21�, graphs �b�, �c�, and �d�,
respectively, this law is observable for k�1. It is in this
region that we compared the rations of the coefficients of ln k
and ln N in deterministic and stochastic growing scale-free
networks.

(5) Graph (e) in Fig. 1. At each time step, a new vertex
becomes attached to each vertex of the graph. The growth
starts with a single vertex �t=−1�. The total number of ver-
tices in the graph is Nt=2t+1. The degree distribution is ex-
ponential. One can check that the number of vertices of de-
gree k at time t is Nt�k� t�=2t+1−k, Nt�k= t+1�=2
�t is assumed to be greater than −1�.

By using the above described procedure, we find the exact
expression

�t�k� =
2t

2t+1 − 1
�2t + 2 − k� . �22�

This formula shows that the linear dependence on degree is
valid for any k. For the large graphs we have

��k,N� �
ln N

ln 2
−

k

2
, �23�

which confirms formula �4�.
In this graph, �min� ln N / �2 ln 2���max/2 which coin-

cides with relation �5�.
Graph �e� has a close stochastic analog: A tree, where at

each step, a new vertex is attached to a randomly chosen
vertex. It is easy to obtain the asymptotic expression for the
mean shortest path length ��N� in this network. Let us con-
sider even more general model. Let at each time step, n new
vertices be attached to a randomly selected vertex. Then the
total number of vertices N grows as Nt�nt. For the total
length of the shortest paths between vertices in the network
at time t+1 one can write

Nt+1�Nt+1 − 1�
2

��t + 1� =
Nt�Nt − 1�

2
��t�

+
1

Nt
Nt�1 · n + 2

n�n − 1�
2

+ n�N − 1����t� + 1� . �24�
t �
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The first term on the right-hand side of this equation is the
total length of the shortest paths in the network at time t. The
second term is the increase of this total length due to the
attachment of n new vertices to a randomly chosen vertex.
The factor 1 /Nt is due to the random choice. The term 1·n is
the sum of the paths connecting the new vertices to their
“host.” The term 2n�n−1� /2 is the total length of the paths
between the new vertices. The last term in the large paren-
theses is the sum of the lengths of the paths connecting the n
new vertices and the Nt−1 old vertices distinct from the
vertex receiving new connections. In the large network limit,
Eq. �24� is readily reduced to the following one:

N2

2
n

d�

dN
= −

n�n + 1�
2

� + nN � nN , �25�

and so we have

� � 2 ln N , �26�

independently of n.
The calculation of ��k� is a more difficult problem. So, for

comparison, we present here only the result of the simulation
of this stochastic network. Figure 3�a� demonstrates that the
dependence ��k� in the stochastically growing network is a
linear function with the same slope −1/2 as in the determin-
istic small world �e� in Fig. 1.

We also considered more general deterministic graphs of
this type, where n new vertices become attached to each
vertex of a network at each time step. The resulting depen-
dence ��k� is a linear function but with slope −1/ �n+1�.
Figure 3�b� shows that ��k� of the corresponding stochasti-
cally growing networks has the same form. We also checked
that ��k=1,N�	2 ln N, as in expression �26� for ��N�.

V. DISCUSSION AND SUMMARY

Several points should be emphasized.
�i� One can estimate a typical value of the correction term

in formula �3�. At the maximum degree kmax�N1/��−1�, this
term is of the order of kmax

�−1 /N�const. This should be com-
pared to ln�kmax

1/��−1�� ln N�.
�ii� One should indicate that law �4�, i.e., a linear depen-

dence ��k�, was obtained only for growing trees with an
exponential degree distribution. In nontree growing networks
with a random attachment �at each time step, a new vertex
becomes attached to several randomly chosen vertices�, we
observed a nonlinear dependence.

�iii� The relative width of the distribution of the interver-
tex distance in infinite small worlds approaches zero �9,17�.
In other words, vertices of an infinite small world are almost
surely mutually equidistant. This circumstance does not al-
low one to measure ��k� in an infinite network with the
small-world effect. However, even in very large real-world
networks �e.g., in the Internet �34��, the distribution of the
intervertex distance is still broad enough. So, in real net-
works, ��k� is a measurable characteristic.

�iv� The degree-dependent mean intervertex distance may
be considered as a measure of “centrality” of a given degree
-6



DEGREE-DEPENDENT INTERVERTEX SEPARATION IN¼ PHYSICAL REVIEW E 73, 056122 �2006�
vertex in a network. How does this characteristic relate to
other centrality characteristics �15�, first of all to the central-
ity index of a vertex �14�? Recall that the centrality index of
a vertex v is defined as cv= �N−1� /�u��v ,u�, where ��v ,u�
is the length of the shortest path between vertices u and v, N
is the number of vertices in the graph, and the sum is over all
vertices of the graph. �The centrality index is often given
without the N−1 factor.� One may see that the mean central-
ity index c�k� of a vertex of degree k is related �but not
equal� to 1 /��k�. Nevertheless, there is a special case—
graphs where every vertex of a given degree k has the same
value of the sum of intervertex distances between this and
the rest of the vertices. So, this value is exactly �N−1���k�,
and consequently c�k�=1/��k�. This situation is realized in
our deterministic graphs. Thus, in the deterministic graphs,
we actually found the inverse centrality index, but in random
networks, c�k� and ��k� are different characteristics.

In conclusion, we have studied the mean length of the
shortest paths between a vertex of degree k and the other
�21� F. Comellas, G. Fertin, and A. Raspaud, Phys. Rev. E 69,

056122
vertices in growing networks with power-law and exponen-
tial degree distributions. In the investigated deterministic and
random networks, we have observed dependences ��k�
which strongly differ from those for uncorrelated networks.
Our results characterize the compactness of a network from
the point of view of a vertex with a given number of con-
nections.
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